

FISICA: <u>FAR-INFRARED SPACE</u> <u>INTERFEROMETER CRITICAL ASSESSMENT.</u>

SCIENCE DRIVERS DEFINITION AND TECHNOLOGY DEVELOPMENT

Giorgio Savini on behalf of the FP7-FISICA Consortium

17-18 Feb 2014

THE CONSORTIUM

Nicola Baccichet, Roser Juanola-Parramon, **Giorgio Savini**, Bruce Swinyard, Amelie Guisseau

Peter Ade, Matt Griffin, Pete Hargrave, Georgina Klemencic, **Enzo Pascale**, Rashmi Sudiwala.

Rob Ivison → Wayne Holland, John Lightfoot

Martyn Jones , David Walker

Colm Bracken, Anthony Donohoe, **Anthony Murphy**, Creidhe O'Sullivan, Neal Trappe

Brad Gom, David Naylor, Locke Spencer, Ian Veenendaal

Kjetil Dohlen, Joel Lemerrer, Fabrice Madec, Eddy Rakotonimbahy, Christel Rossin, Sebastien Vives, Annie Zavagno

Scige' Liu, Stefano Pezzutto, Luigi Spinoglio.

Valerio lafolla, Carlo Lefevre, Carmelo Magnafico, Diana Martella, Simone Pini, Daniele Schito

FISICA ACTIVITIES

17-18 Feb 2014

SCIENCE NEEDS

SCIENCE IN CONTEXT

DATA PRODUCTS

Instrument Characteristics		
Primary diameter	2 m	ext
Baseline Range	0, 10-100m	ext
Optics Temperature	4K cryo-cooled	(1)
Configuration	Rigid Truss or Tether	(3)
Mission Lifetime	3-5Yrs	ext
Sky Coverage	+/- 20 deg. from ecliptic	(1,2)
Spectral Coverage (µm)	25-50,50-100,100-200,200-400	(1)
Detector Arrays (35/70/140/280µm)	2x(28x28/14x14/8x8/4x4)	(*)

Derived parameters:

Angular resolution	0.1 (lambda/100um) arcsec	(¹)
Field of View	1 arcminute	(^{1,3})
Spectral resolution	~3000-5000	(1)ext.
Point Source Sensitivity (5s in 24hrs)	(35 / 70 / 140 / 280) μm	
-) Spectral Line (10 ⁻¹⁹ W/m ²)	0.7 / 0.4 / 0.3 / 0.3	Ext.
-) Continuum (μJy)	3.5 / 5 / 7.5 / 12	
Typical Observation Time	1 day	(¹)

Initial numbers were based on an ideal-element sensitivity model Consistent with a scaled version of the NASA-concept SPIRIT.

INSTRUMENT REQUIREMENTS

The Sensitivity Spreadsheet Inter-connected sections with mutual dependencies. Final Performances are gathered in the "performance sheet". **AUCI** = Inst Performance Spacecraft v Interferometer v Telescopes v Inst Spectral v Inst ColdOptics v Inst detectors v Electronics&Data SKY & Sources Enzo Log Wavelengths SPACECRAFT SPECIFIC PARAMETERS Description Symbol Units Units Comments Dependencies 6 Quantity Value Value AG INTERFEROMETER ARCHITECTURE 5 2 PARAMETERS Scien e & Technology Description Units Quantity Symbol Value Units Value Comments 6 з CARDIF **DETECTORS - PARAMETERS** 4 5 Quantity Description Symbol Value Units Value Units Dependencies CAERDY **TELESCOPE PARAMETERS** 5 NUI MAYNOOTH Symbol Value Units Value Units 6 Quantity Description Comments University of Let bridge INSTRUMENT SPECTRAL ARCHITECTURE DEFINITION 5 6 Quantity Description Symbol Value Units Value Units Comments COLD OPTICS PARAMETERS 5 ⁺UCL Quantity Description Symbol Value Units Value Units Comments 6 ELECTRONICS and DATA Parameters 4 Quantity Description Symbol Value Units Value Units Comments AG SKY & SOURCES PARAMETERS NEP Flux (1/cm Quantity Description Symbol CIB Waterumbers Frequency 2001 SUN cm^-11 TH2 0.74948 8.34E-14 3.22E-12 1.36E-10 9.90E-15 1.70E-12 4.79E-16 4.48E+01 2.40E+02 2.07E+02 1.07E+00 2.20E+02 3.09E+00 1.32E-40 1.70E D 0 600 14.989 487.80487804878 14,624 2 476 190476190476 14 27580952380 3 465.116279069767 13.9438139534 5 444 44444444444 13 434 782608695652 13 03443478260 425.531914893617 12.757106382978 0 4.77E-101 1.10E-21 7.67E-12 7.46E-16 1.03E-70 1.87E-136 1.77E-45 8.46E-06 7.08E-01 6.98E-03 2.60E-30 3.49E-63 0.00E+00 0.000 8 416 6666666666667 12 4913333333 0 0 0 0 4.65E-89 1.87E-21 7.34E-12 6.87E-16 2.28E-69 9.89E-134 1.79E-44 1.14E-65 7.15E-01 6.91E-00 1.28E-29 8.30E-62 0.00E+00 0.000 3.71E-67 3.10E-21 7.03E-12 6.33E-16 4.33E-68 4.06E-131 1.06E-43 1.52E-46 7.22E-01 6.86E-00 6.66E-29 1.73E-60 0.01E+00 0.000 9 408 163265306122 12 23640816326 4.5 0 0 0 0 0 400 11.1 1 352 156862745098 11.756549015 11.9916 2.49E.95 5.05E.21 6.73E.12 5.85E.16 7.38E.67 2467-6 (562-1) 472-12 (562-1) 478-12 (562-1) 446-21 (166-21) 746-21 (166-2) 478-20 (247-2) 326-3 (576-3) 576-3 (166-3) 1426-3 (166-3) 146-3 (166-3) 146-3 (166-3) 146-3 (166-3) 146-3 (166-3) 146-3 (166-3) 146-3 (166-3) 146-3 (166-3) 1615384615385 11.430461630 377.368490666038 11.31290566037 370.37037037037 11.10340740740 INSTRUMENT PERFORMANCE QUANTITIES Value Units Value Units Quantity Description Symbol Comment

SATELLITE-RELATED ACTIVITIES

Study of tolerances and other implications of CFRPs for light-weight deployable mirrors

17-18 Feb 2014

SATELLITE-RELATED ACTIVITIES

Satellite motion tolerances based on accelerometer control loop

10

Frequency [Hz]

17-18 Feb 2014

SATELLITE-RELATED ACTIVITIES

Nano-satellite test-bench validation

17-18 Feb 2014

University of Lethbridge PRIFYSGOL AFROYO

Study of alternative techniques

van der Avoort et al. (2007)

Cryogenic (4K) delay-line metrology

17-18 Feb 2014

Complex Calibration Sources

FIINS (FAR INFRARED INSTRUMENT SIMULATOR) - 1

Based on the original work of Roser Juanola-Parramon (Doctoral Thesis)

University of Lethbridge

NUI MAYNOOTH

â

Science & Technology Facilities Council

FIINS (FAR INFRARED INSTRUMENT SIMULATOR) - 1

University of Lethbridge

â

EU - NETWORK

DISSEMINATION

17-18 Feb 2014

EU - NETWORK

DISSEMINATION

17-18 Feb 2014

CONCLUSIONS

> 2013 has been an exciting (not all good) year for the far-infrared

- "Death" of Herschel, but not of its science
- L2/L3 call pooling of ideas and resources
- The SPICA next step...

FISICA-FP7 will focus on the identification and definition of the key data products required from the science + analysis of the requirements of a space interferometer to achieve these.

Technological activities relevant to satellite and instrument have commenced

➤ While the program cannot be comprehensive of all techniques and existing technology groups interested in the FIR, the Networking and Dissemination elements allow for a regular note-comparing exercise in order to keep focus

For information on the Consortium (and future related workshops): <u>www.fp7-fisica.eu</u>

➤ There is a plan (not yet implemented) to use the webpage as a repository of Far-Infrared science and mission concepts to allow the community to access relevant information as required.

17-18 Feb 2014

THANKS FOR YOUR KIND ATTENTION

17-18 Feb 2014

ABBITIONAL MATERIAL

17-18 Feb 2014

DOUBLE-FOURIER MODULATION (DFM)

Astron. Astrophys. 195, 350-363 (1988)

Double Fourier spatio-spectral interferometry: combining high spectral and high spatial resolution in the near infrared *

J.-M. Mariotti $^{1}\ \text{and}\ S.T.$ Ridgway 2

A TEST-BED FOR THE FIRI OPTICS DEVELOPMENT

Spectral arm

Output ports

Variable baseline

40 45

17-18 Feb 2014

TEST-BED UPGRADES PLANNED - MID & FAR INFRARED

Upgrade metrology

17-18 Feb 2014

TEST-BED UPGRADES PLANNED - MID & FAR INFRARED

A wide-band beam splitter (or maybe two)

Optical bench conversion

TEST-BED UPGRADES PLANNED - 3 BEAMS?

Detector planes

17-18 Feb 2014

CALIBRATION SOURCES (FROM SIMPLE TO COMPLEX)

Grainger et al. 2012

CALIBRATION SOURCES (FROM SIMPLE TO COMPLEX)

*x*₁₃

 x_{ii}

1st EU FP7-FISICA Workshop - Roma 2014 - FISICA-FP7 Consortium

• x

CALIBRATION SOURCES (FROM SIMPLE TO COMPLEX)

17-18 Feb 2014