Imaging planet-formation signatures with ground-based interferometry & European Interferometry Initiative activities

Stefan Kraus University of Exeter President EII Science Council

1st FISICA workshop 2014 February 18, Rome

EII Bureau: Paulo Garcia, Olivier Chesneau, Jean-Philippe Berger

PFI Kick-off committee: John Monnier, Jean-Philippe Berger, Chris Haniff, Mike Ireland, Lucas Labadie, Sylvestre Lacour, Jörg-Uwe Pott, Steve Ridgway, Jean Surdej, Thierry Lanz, Theo ten Brummelaar, Peter Tuthill, Gerard van Belle

Outline

- 1. The need for high-angular resolution imaging
- 2. Planet-formation signatures revealed with VLTI
- 3. Overview of EII activities
- 4. Future opportunities in optical interferometry
- 5. Conclusions

The need for high-angular resolution imaging

Protoplanetary disk structure

The need for high-angular resolution observations

Spatially unresolved techniques (e.g. SED / line-profile modeling) face severe limitations:

- Parameter degeneracies
- Model degeneracies (do we include the right physics?)
- Insensitive to asymmetric structures (planet formation, instabilities, ...)

→ Model-independent IMAGING needed

Ground-based interferometers

Interferometry breaks the resolution barrier imposed by diffraction (λ /D) and the atmosphere

VLTI (Paranal/Chile) 4x8.2m+4x1.8m $\lambda=1-13 \ \mu m$

CHARA array (Mt Wilson/CA) 6x1m $\lambda=0.5-2 \ \mu m$

NPOI (Flagstaff/AZ)

6x12cm+4x1.8m $\lambda=0.5-0.9 \ \mu m$

VLTI Interferometry

VLT Interferometer 1-13 μm, λ/B=0.001"

 VLTI instruments:

 MIDI (2T):
 8

 AMBER (3T):
 1

 PIONIER (4T):
 1

 GRAVITY (4T):
 2

 MATISSE (4T):
 3

115

8-13 μm 1-2 μm 1 μm 2 μm 3-13 μm

operational operational operational first light 2014 first light 2015

155

4333

 $(\lambda/\Delta\lambda \text{ up to } 12,000!)$ (imaging) (sensitivity, astrometry) (imaging, L+M+N band)

Planet formation signatures revealed with infrared interferometry

Signatures of planet formation

Planet formation alters the disk structure, causing disk gaps, spiral arms, resonance effects, disk warping, ...

Armitage et al. 2005, Greaves et al. 2008

(Sub-)millimeter interferometry has revealed central density depressions

deproj. baseline $[k\lambda]$

Andrews et al. 2009, 2011

Benisty et al. 2010 Tatulli et al. 2011 Panic et al. 2012 Mulders et al. 2013 T Cha

TW Hya

Eisner et al. 2006 Ratzka et al. 2007 Akeson et al. 2011 Arnold et al. 2012

Open questions:

- (1) Can we find evidence for disks with partially cleared gaps?
 → establish evolutionary sequence of disk clearing
- (2) How does the disk structure/clearing mechanism depend on stellar mass?
 → larger object sample needed, in particular in intermediate-mass regime

V1247 Orionis

Spectral type F0V $T_{eff} = 7250 \pm 100 \text{ K}$ $d = 385 \pm 15 \text{ pc}$ $M = 1.86 \text{ M}_{\odot}$ Age = 7.4±0.4 Myr

V1247 Ori exhibits MIR flux deficit compared to typical protoplanetary disks

→ Indirect evidence for a gapped disk structure

Gemini/TReCS speckle interferometry yields MIR 2-D power spectra

→ Inclination: 31±7°
 PA: 104±15°

Gemini/TReCS

AU-scale asymmetries: Disk inhomogeneities

Keck/NIRC2 aperture masking reveals asymmetries

- → Not consistent with companion scenario
- → Complex density structures in the gap region, possibly due to dynamical interaction with gap-opening planets

SAO206462, Dong et al. 2012

MWC758, Grady et al. 2013

Kraus et al. 2013

Dust mineralogy

Carbon-dominated dust mineralogy required (other carbon-rich systems: Fomalhaut, 55 Cnc e, ...)

Spectrally dispersed MIDI visibilities constrain origin of hydrocarbon features

→ PAH emission originates in the outer disk

Aperture synthesis imaging

First images from the PIONIER/VLTI optical interferometry imaging survey of Herbig Ae/Be stars

→ With the upcoming 4T beam combiners (PIONIER, soon GRAVITY and MATISSE), imaging gets much more routine and efficient

Kluska et al. 2013, PPVI poster

Gas kinematics studies

 Spectrally dispersed interferometry constrains the gas kinematics

Kraus et al. 2012a

The European Interferometry Initiative (EII)

The European Interferometry Initiative

Open association of institutes and laboratories willing to collaborate on the exploitation and development of long baseline interferometry in optical/infrared astronomy.

EII is <u>the</u> place where (ground-based) interferometry in Europe is discussed and organised on trans-national level

EII & ESO: EII should act <u>aside ESO</u> for scientific vision (trigger ESO's scientific thoughts, e.g. 2005 workshop on 2nd-gen.) and act <u>together with ESO</u> to organize the community (e.g. VLTI Community Meetings)

Lobbying with funding agencies and decision makers

EII - Governing bodies

Bureau:

President Vice-President Secretary VLTI Project Scientist Stefan Kraus Olivier Chesneau Paulo Garcia Jean-Philippe Berger

Science Council:

President Austria Belgium Czech Republic ESA FSO France Germany Hungary Italy Israel Netherlands Poland Portugal Spain Switzerland United Kingdom

Stefan Kraus Josef Hron Jean Surdej Pavel Koubsky Malcolm Fridlund Jean-Philippe Berger Alain Chelli Thomas Henning Laszlo Mosoni Sebastiano Ligori Frez Ribak Walter Jaffe Andrzej Niedzielski Paulo Garcia Carlos Eiroa Didier Queloz David Buscher

OPTICON FP7 workpackages

Active working groups / Joint Research Activities:

- "Interferometric Image Reconstruction" JRA (2013-2016, chair: Eric Thiebaut)
- "Future of Interferometry in Europe" WG (2013-2016, chair: Jean Surdej)

Completed:

- "AGNs and the Galactic Center" (FP7-1, 2009-2012)
 → 2011 Lisbon workshop
- "Circumstellar disks and planets" (FP7-1, 2009-2012)
 → 2010 Kiel workshop & AARA article
- Science cases for a 2nd generation facility" (FP7-1, 2009-2012)
 → 2010 JENAM session
- "Integrating interferometry into mainstream astronomy" JRA (FP6)
 → Feasibility studies for 2nd generation VLTI instruments
 → Offline data reduction: Model-fitting (LITpro) + image reconstruction
- Radiative transfer (FP6)
- Interferometry and astroseismology (FP6)

Fizeau exchange grants

Goals:

- Strengthen nascent collaborations
- **Spread** interferometric knowledge across Europe
- **Enhance** the active participation of new countries in VLTI

Methods:

- Fund short research/technical/training exchange visits (1 week 1 month)
- Priority to young researchers and "knowledge poor" institutes
- Competitive calls twice a year (March and September)

Selection from an independent project office (chair: Josef Hron)

Fizeau exchange grants

Publicity: Announced at OLBIN and through posters

Around 80 grants awarded between 2009-2012

Next deadline on March 15

VLTI schools

- 2006 "Observation and Data Reduction with the VLTI", Goutelas
- 2007 "Circumstellar disks and planets at very high angular resolution", Porto
- 2007 "AGNs at the highest angular resolution", Torun
- 2008 "Astrometry and Imaging with the VLTI", Keszthely
- 2010 "High spatial resolution in astronomy", Porquerolles Island
- 2013 "High angular resolution for stellar astrophysics", Barcelonnette
- next: Cologne (likely 2015)

Images: F. Millour

Future opportunities in ground-based optical interferometry

Future of Interferometry in Europe

EII working groups:

"Circumstellar disks and planets" (2009-2012) "AGNs and the Galactic Center" (2009-2012) "Science cases for a 2nd generation facility" (2009-2012) "Future of Interferometry in Europe" (since 2013)

Dedicated workshops on the Future of Interferometry:

2004: Workshop "Science cases for next generation OIR interferometric facilities", Liege 2005: Workshop "Technology Roadmap for Future Interferometric Facilities", Liege

2010: JENAM session "Science Cases for OIR Interferometers – Present and Future", Lisbon

2013: EWASS session "Science with present & future interferometric instruments", Turku

2013: Workshop "Improving the performances of current optical interferometers & future designs", OHP

Similar efforts in the US (Interferometry Forum) and in national communities

SAO206462, Dong et al. 2012

MWC758, Grady et al. 2013

Quinn et al. 2002

Pre-transitional disks exhibit **quasi-periodic variability on time scales of months,** indicating structural changes in the inner disk regions

Objective: Image the complex & highly dynamical processes in the innermost AU and study their temporal evolution

Structural variability (HD100546)

Panic et al. 2012, Kraus et al. 2013

Objective: Trace small dust grains & detect spatial variations in dust mineralogy
→ early stages of grain growth and gap opening, dust filtration

0.3 AU

30 AU 45 AU

20 411

80 AU

van der Marel et al. 2013

Objective: Determine distribution of water & ices

➔ link to habitability

TW Hya

CO "snow line" imaged with ALMA

Qi et al. 2013

Objective: Detect young accreting protoplanets

Objective: Detect young accreting protoplanets

- → constraints on **planetary migration**
- → link to **exoplanet statistics**

Key questions:

- (1) What determines the architecture of planetary systems?
- (2) Did the planets form where we observe them, or did they migrate due to planet-disk interaction?

Objective: Resolve the protoplanetary accretion disk

Planet Formation Imager (PFI) initiative

Complementary aspects to ALMA:

- ➔ higher resolution allows probing terrestrial planet-forming zone, which is dominated by other mechanisms (dust sublimation, gas-disk truncation, magnetospheric accretion, ...)
- → NIR/MIR/sub-mm probes complementary opacity regimes, grain sizes, and line tracers

Tentative international "Kick-off committee" has been formed, including representatives from EU, US, Australia, and IAU commission 54:

- → Set up **Project Steering Committee**
- → Define Scientific Working Group to develop and prioritize key science cases
- → Define **Technical Working Group** to develop a technology roadmap

Exciting new technology developments are on the horizon (MIR fibers, detectors, heterodyne beam combination with coherent laser combs, ...)

→ Upcoming dedicated session at SPIE (Montreal, June 2014)

We invite participation from wider scientific community: → Sign up for PFI Mailing List: www.planetformationimager.org

Conclusions

NIR+MIR interferometry provides new constraints on the **AU-scale structure of protoplanetary disks** and the disk clearing mechanism

Interferometry in spectral features provides detailed constraints on **dust mineralogy & gas kinematics.**

Interferometric imaging is still challenging, but becomes more routine with the upcoming generation of 4T and 6T beam combiners

"Planet Formation Imager": Initiative for a NIR/MIR facility that will be optimized to image planet-formation processes on (sub-)AU scales.