Photon Counting Terahertz Interferometry (PCTI)

Hiroshi Matsuo Advanced Technology Center National Astronomical Observatory of Japan

Hanbury-Brown and Twiss Experiment (1956)

Table 1. COMPARISON BETWEEN THE THEORETICAL AND EXPERIMENTAL VALUES OF THE CORRELATION

Cathodes superimposed (d=0)

Cathodes separated $(d = 2\alpha = 1.8 \text{ cm})$

F	xperimental	Theoretical	Experimental	Theoretical
ratio of		ratio of	ratio of	ratio of
correlation		correlation	correlation	correlation
	to r.m.s.	to r.m.s.	to r.m.s.	to r.m.s.
	deviation	deviation	deviation	deviation
	$S_e(0)/N_e$	S(0)/N	$S_e(d)/N_e$	S(d)/N
1	+ 7.4	+8.4	-0.4	~ 0
2	+ 6.6	+8.0	+0.5	~ 0
3	+ 7.6	+8.4	+1.7	~ 0
 4	+ 4.2	+5.2	-0.3	~ 0

Fig. 2. Simplified diagram of the apparatus

Narrabri Stellar Intensity Interferometer

Narrabri Stellar Interferometer

Hanbury-Brown et al. (1974) Diameter of 32 early-type stars were measured.

Limitation of intensity interferometers

Low efficiency for optical observations
Observation of very early type stars only
Phase information is missing
Measurement of stellar diameters only

Intensity Interferometry in THz frequency
-> Photon Counting Terahertz Interferometry (PCTI)

Fluctuation of thermal radiation

$$\Delta n = \sqrt{n + n^2}$$
, where $n = \frac{1}{e^{hv/kT} - 1}$

n: photon occupation number

$$A\Omega = \lambda^2$$

NEP =
$$\sqrt{2P \cdot (h\nu + kT_B)} [W/\sqrt{Hz}]$$

References

A. Einstein (1909)
J. Mather (1984)
J.M. Lamarre (1986)
J. Zmuidzinas (2003)

THz photon fluctuation

NEP =
$$\sqrt{2P \cdot (hv + kT_B)} [W/\sqrt{Hz}]$$

Introduction of Quantum Optics

from "Quantum Optics" by Mark Fox (2006)

Photon Statistics

- sub-Poissonian statistics: $\Delta n < \sqrt{\overline{n}}$,
- Poissonian statistics: $\Delta n = \sqrt{\overline{n}}$,
- super-Poissonian statistics: $\Delta n > \sqrt{\overline{n}}$.

$$\Delta n = \sqrt{n + n^2}$$

$$n = \frac{1}{e^{h\nu/kT} - 1}$$

First order correlation function

$$g^{(1)}(\tau) = \frac{\langle \mathcal{E}^*(t)\mathcal{E}(t+\tau)\rangle}{\langle |\mathcal{E}(t)|^2 \rangle} \,.$$

Second order correlation function

$$g^{(2)}(\tau) = \frac{\langle \mathcal{E}^*(t)\mathcal{E}^*(t+\tau)\mathcal{E}(t+\tau)\mathcal{E}(t)\rangle}{\langle \mathcal{E}^*(t)\mathcal{E}(t)\rangle\langle \mathcal{E}^*(t+\tau)\mathcal{E}(t+\tau)\rangle} = \frac{\langle I(t)I(t+\tau)\rangle}{\langle I(t)\rangle\langle I(t+\tau)\rangle},$$

Photon Bunching, Anti-bunching

bunched light: g⁽²⁾(0) > 1,
coherent light: g⁽²⁾(0) = 1,

• antibunched light: $g^{(2)}(0) < 1$.

From M. Fox Quantum Optics

THz photon bunches measured from a Synchrotron Source

YBa2Cu3O7-5 thin film detectors for picosecond THz pulses

Fig. 3 (a) Measured detector signal of a 15 nm YBCO THz HEB over time. The distance between two trains is 20 ns (50 MHz). In (b) one train with 33 bunches is depicted in detail.

Probst et al., Journal of Low Temp. Phys. (2012)

The use of photon bunching ?

Brightness temperature measurements

- $T_B \sim 10^8 \text{ K in X-ray}$
- $T_{\rm B} \sim 10^5 \, {\rm K}$ in optical
- $-T_{\rm B} \sim 100$ K in terahertz
- Application to CMB
- **Application to Terahertz Interferometry**
 - FIR atomic lines, black holes, stars, exo-planets

Brightness temperature measurements

NEP =
$$\sqrt{2P \cdot (h\nu + kT_B)} [W/\sqrt{Hz}]$$

$$T_B = \left(\frac{\text{NEP}^2}{2P} - h\nu\right) \times \frac{1}{k} \quad [\text{K}]$$

de Bernardis and Masi (1982)

THz photons are bunched

NEP =
$$\sqrt{2P \cdot (hv + kT_B)} [W/\sqrt{Hz}]$$

Photon Counting THz Interferometry (PCTI)

Thermal THz photons are highly bunched - High efficiency measurement Bunches in two detectors can be used to measure delay - Complex visibility can be measured Wide bandwidth recording enables - Photon Counting VLBI

Number of Photons expected

1Jy source v=1THz B=100GHz
With 10m diameter telescope

100 M photons/sec

FIR lines from massive star forming regionsNearby Stars and PlanetsAGNsCMB photons

Phase Measurement using Photon Bunches

Photon rate of 100 MHz with 100 sec measurement, total number of photons 10^{10} . Timing accuracy for one photon is $1/100MHz = 10^{-8}$ sec. Statistical accuracy with 100 sec measurements 10^{-8} / sqrt(10^{10}) = 10^{-13} sec

An example of amplitude and intensity cross-correlation

Science Cases

FIR atomic fine structure lines from massive star-forming region
Imaging AGNs
Imaging nearby stars
Exo-planet search and imaging

Science Cases

FIR atomic fine structure lines from massive star-forming region
Imaging AGNs
Imaging nearby stars
Exo-planet search and imaging

Space-borne Photon Counting THz Interferometer

Earth-like planet at 1.3 pc

– With 6 m telescope at 2 THz (B=1 THz)

Photon arrival rates are

- 150 M photons/sec from the primary star
- 150 k photons/sec from interstellar background
- 500 photons/sec from the planet

Photons from planets are countable and bunched !

Technology Readiness ?

Detector technologies **Delay** measurements **Correlation efficiencies** Formalism in quantum optics Aperture synthesis in lab. Ground-based demonstration PCTI in space

Space THz Interferometer The Road Map

SPICA

SPIRIT

FIRI ESPRIZZ

Millimetron

AKARI

Herschel

Spitzer

SPECS

THz Gap of Spatial Resolution

