The Nucleus of our Galaxy

Javier R. Goicoechea CAB (CSIC-INTA), Madrid.

Herschel collaborators: Mireya Etxaluze, Tom A. Bell, Maryvonne Gerin, Pepe Cernicharo

DIRBE @ 140 µm

CSIC

Herschel's far-IR view of the Galactic Center (GC)

- A few 100's times closer than the nearest AGN \rightarrow high spatial resolution
- GC ISM: on average higher $n(H_2)$, T_k , Δv_{turb} , B, ...
- What heats the neutral ISM? How do stars form in the GC?

[See reviews by Güsten 1989 and Genzel et al. 2010]

 The majority of the radiation energy from the GC comes as infrared photons (A_V=30) → almost transparent at far-IR wavelengths.

Inner 3 parsec of the Milky Way

Laboratory for extragalactic CNDs, black hole accretion, extreme star formation: shocks, turbulence dissipation, magnetic fields and high-E radiation in the ISM

K - HCN - 6cm

K_s band (2.2um) from VLT-ISAAC (Schödel et al. 2007) HCN 1-0 from OVRO interferometer, 4" (Christopher et al. 2005) Radio 6cm from VLA interferometer, 3" (Yusef-Zadeh & Morris 1987)

Stars orbiting the central supermasive black hole

Enclosed mass in r < 6 light-hours
 ~ 4 x 10⁶ M_{sun} (BH!)

How were the stars

formed??

H band (1.6um) from VLT- NAOS/CONICA, adaptive optics (Genzel et al. 2003) Diffraction-limited resolution ~ 0.05"

Ionized Gas streamers feeding SgrA*?

First dynamic evidence from large gas velocities perhaps hidden a mass of 2-4x10⁶ M_{sun} near SgrA*

3.6cm VLA interferometer radio continuum map, 0.5" resolution (Robert & Goss 1993) Multi- λ observations of stars and ISM around SgrA* have changed our view of the Galactic Center

All had <5" angular resolution and were sensitive to the extended emission

What about the far-IR?

Circumnuclear disk (CND) <u>first</u> detected at far-IR wavelengths with KAO (Becklin et al. 1982)

Reservoir of material accreting onto central parsec:
→ star formation & accretion onto SgrA*

The inner parsecs of the Galaxy in the far-IR...

[See recent interferometric works: Montero-Castaño+2009; Martín+2012; Yusef-Zadeh+2013 ...]

Far-IR spectroscopy! Properties of material around SgrA*

ESA Press release

SPIRE+PACS spectrum toward SgrA* (55-650µm)

- Molecular lines of: OH^+ , H_2O^+ , H_3O^+ , CH^+ , HF, H_2O , OH, NH, NH_2 , HCN, HCO^+ ...
- ¹²CO rotational ladder (up to J=24-23 towards SgrA*, J=30-29 towards CND)
- Atomic fine structure lines: [OIII], [OI], [CII], [NIII], [NII] and [CI]

Powerful Far-IR diagnostic toolbox to characterize galaxy nuclei:

Atomic fine structure lines

High-J CO, light hydrides...

(NOT with ALMA or JWST !)

The inner central parsec of the Galaxy Central cavity and mini-spiral

arcsec

Δδ

[NIII]57 μm $F_{\lambda}-F_{c}=[-30,+250]$ Jy/spaxel e.g., [NIII] 57um **Ionized** gas 20 Fine structure lines: $T_{eff} \sim 35,000 \pm 1,000 \text{ K}$ 0 (OB stars central cluster) $n_e > 10^{3.5} \, cm^{-3}$ (from [OIII]52,88µm) -20ᠵᡗᢞᡃᡗᠵ 0.9 pc Background image is VLA radiocontinuum 20 -20at 6cm (thanks to C. Lang & M. Requena) $\Delta \alpha$ [arcsec]

10" resolution

The inner central parsec of the Galaxy Strong [OI] emission

10" resolution

The inner central parsec of the Galaxy High-J CO peaks towards CND

10" resolution

The inner central parsec

Far-IR luminosities

Inner 30"x30"

Species	Luminosity
[OIII] 52,88µm	885 L _{SUN}
[OI] 63,145µm	855 L _{SUN}
[CII] 158µm	230 L _{SUN}
[NIII] 57µm	130 L _{SUN}
[NII] 121,206µm	120 L _{SUN}
¹² CO (<i>J</i> =4 to 24)	125 L _{SUN}
[CI] 370,609µm	6 L _{SUN}
¹³ CO (<i>J</i> =5 to 12)	4 L _{SUN}

lonized gas ≈ 48%

FIR cooling: Neutral atomic ≈ 46% → GC = HII region + PDRCO molecular ≈ 6%+ hot neutral component

Origin of the hot neutral component?

PDR view: warm gas heated by UV photons from central stellar cluster

PDR

code

PDR models can reproduce the high-*J* CO lines <u>only</u> if **unresolved** hot and dense **irradiated clumps** exist $(n_{H} \sim 10^7 \text{ cm}^{-3})$

Shock view: hot gas heated low-density shocks and turbulence dissipation

Isothermal component: $T_k \sim 1000 \text{ K}$ $n(H_2) \leq 10^4 \text{ cm}^{-3}$

Non-dissociative C-type shocks high-J CO, H₂O ...

Shocks near SgrA* consistent with the high velocity gas and with distorted velocity field in the region

Kaufman & Neufeld 1996, models

Need much higher angular resolution to resolve the true gas morphology

2 SCENARIOS (SgrA*):

- 1) <u>Distribution</u> of temperature components "95% of CO column density at T_k <300 K".
 - → UV heating can explain the mid-J CO emission but not the high-J CO line emission
 → Irradiated dense clumps?
- 2) <u>Single</u>, hot ($T_k \approx 1000 \text{ K}$) and low-density ($n(H_2) < 10^4 \text{ cm}^{-3}$) gas component
 - → "all CO is hot": PDRs, XDRs or enhanced CR flux heating NOT enough.
 →Low density shocks??

First ALMA observations toward Sgr A* (~2")

SiO (5-4) 3.6cm VLA

embedded massive protostellar outflows??

Most important PDR & shock & protostar's diagnostics in the Far-IR !!

Far-IR: not playing the same league...

From T. de Graauw

Limits our understanding...

Far-IR: requirements for GC studies

Herschel/PACS (Goicoechea et al.)

VLT (Genzel et al.)

stars

- Angular resolution: 1"-0.3" @ 100 μ m \rightarrow a few thousands AU at 8 kpc
- Fundamental structures and sources (in-falling clumps?, protostellar envelope/disk/outflows?)
- Spectral resolution:
- Heterodyne or $R \ge 30,000$ for studies of gas kinematics
- Sensitivity: e.g., Flux([OI]63)~2.5E-17 W/m²/0.3" Flux(CO 14-13)~ 2E-19 W/m²/0.3"
- Mapping semi-extended sources?: ~1'x1' FoV (mosaicing?) (short spacings?)